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Commonly available optimization methods typically produce a single optimal 
design as a Constrained minimum of a particular objective function. However, 
in engineering design practice it is  quite often important to explore as much 
of the design space as possible with respect to many attributes to f ind  out what 
behaviors are possible and not possible within the initially adopted design con- 
cept. The paper shows that the very simple method of the sum of objectives is  
useful for such exploration. By geometrical argument i t  is demonstrated that 
i f  every weighting coeficient is  allowed to change its magnitude and its sign 
then the method returns a set of designs that are all feasible, diverse in their 
attributes, and include the Pareto and non-Pareto solutions, at least for  convex 
cases. Numerical esamples in the paper include a case of  an  aircmft wing struc- 
tural box with thousands of degrees of freedom and constraints, and over 100 
design variables, whose attributes are structural mass, volume, displacement, 
and frequency. The method is  inherently suitable for parallel, coarse-grained 
implementation that enables exploration of the design space in the elapsed time 
of a single structural optimization. 

Introduction 
OST structural optimization applications M have minimum weight as the objective. How- 

ever, the complete description of a structure entails 
many other quantities that the designer may wish to 
influence, especially in a multi-disciplinary environ- 
ment in which these quantities couple the structure 
to other disciplines and subsystems. These quanti- 
ties that collectively characterize the structure, will 
henceforth be referred to as the attributes. 

This paper shows how multi-objective (Pareto) 
optimization enables a degree of control over the at- 
tributes in structural design. A body of literature 
exists on multi-objective optimization. However, its 
focus seems to be (e.g., Stadler') on the perfor- 

mance and theoretical aspects of the methodology 
rather than on issues of a direct interest to the struc- 
tural designer. The practitioner toolbox for multi- 
objective optimization contains several techniques 
that differ in terms of computational efficiency, effec- 
tiveness, and ease of use. The following are typical 
examples of these techniques: 

1. Composite objective function F = wZ f z  

where w L  is a weighting factor assigned-to the 
objective component f L  

2. Discrepancy objective function F = 
( f L  - f ~ ) '  where f~ is a target set for 

1 

the objective components f l  

3. Goal Programming (a.k.a. Compromise Pro- 
gramming) in which the objective function may 
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function is the same as in item 2 but the 
targets are derived by optimizing each ob,jec- 
tive separately, one at a time, i.e., f? = 
min(f,; X : g ( X )  5 0), where f d  is the t t h  at- 
tribute 

5. Normal constraint method (e.g., Ismail-Yahaya 
and hlessac') 

Among these techniques, the composite objective 
function technique appears by far the simplest to 
me. It is also a natural choice for coarse-grained par- 
allel computing with existing analysis and optimiza- 
tion programs - an important advantage in view of 
the multiprocessor computers becoming commonly 
available. On the other hand, the method is not 
the mathematician's favorite because of its short- 
comings examined in, for example, Ismail-Yahaya 
and Messac,' Messac and Ismail-Yahaya,3 Das and 
Dennis,4 Koski5 and Belegundu and Chandrupatla.' 
The shortconiings pointed out most often are the 
method missing some of the Pareto-points and its 
inability to  return points uniformly distributed over 
the Pareto-frontier (remedies were proposed, e.g., 
Ismail-Yahaya and hIessac2). 

However, these shortcomings are not decisive 
herein because the purpose of this paper is not to 
contribute to  the theory of Pareto-optimization. Its 
intent is merely to establish a practical method for 
exploration of the design space simultaneously for 
many design attributes, including Pareto- and non- 
Pareto points alike, and to illustrate the method 
with an example of dimensionality large enough to 
be relevant to real-world applications. The remain- 
der of the paper shows that, for the above purpose, 
the composite objective function appears to be a 
good choice. 

Composite Objective Function 
Properties 

It is useful to begin with preliminaries that usu- 
ally appear in literature in a mathematical form but, 
for a difference, will be presented here with emphasis 
on descriptive geometry. Consider a convex design 
space ( X I ,  X z )  whose boundary is formed by con- 
straints c1 = 0 and e~ = 0 as depicted in Fig. 1. 
Two linearly independent objective functions. .fl and 
f i ,  exist and are assumed, temporarily, to be linear. 
Then, their contours may be represented by two sets 
of straight lines as depicted in Fig. 1, and the arrows, 
GI and Ga, portray the gradient vectors of these 
functions. Monotonicity of linear functions deter- 
mines that the constrained extrema of f l  and f l  lie 
at the points A, B ,  D, E ,  where the contour lines 

are tangent to the constraint boundary curves, con- 
sistent with the nature of most engineering problems 
in which minima are, typically, constraint-bound as 
opposed to free minima located inside of the feasible 
space. 

-infeasible domain - vertex 
F = w1 f, + wz fz 

1 = w1 {GI I+ Wz {Gz 1 
\ A, B - min, max off, 

9 D, E - min, max of fz 
\P, Q - min, max of F 

x2 

\ 

\ p fz 

X I  

Fig. 1 Composite Objective Function 

A composite objective 

F = ~ ~ 1 1  .fi + 1~12 f 2  (1) 

has contours shown in Fig. 1 by the third set of 
straight lines, its gradient vector 

G F  = t ~ l G l  + U J ~ G ~  (2) 

and its extrema lie at the tangency points P and Q. 
Turning to Fig. 2, the vectors wlG1 and wG2 

may be regarded as skew coordinates (the objective 
functions must be linearly independent to avoid the 
degenerate case of co-linear coordinate axes). Then, 
it is apparent that by choosing the signs and values 
of till and u12, one may orient G F  at any angle a in 
a full 0" to 360" range. 

Fig. 2 Gradient Vector 

One full rotattion of GF through 0" to 360" results 
in the extremuni points P and Q tracing the entire 
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is present. 
Based on the foregoing geornetrical argument il- 

lustrated in Figs. 1-3, one may assert that optimiza- 
tion defined as 

Given f , ,  where i = 1, ..., N f  
t i l , ,  where i = 1, ..., NJ 
g l ,  where J = 1, ..., Aic 

Minimize F = iiiL fi 

1 

Satisfy ,qJ < O  - 

when repeated for tilz taken in a sufEiciently wide 
interval, returns design points located either on the 
feasible space boundary or inside of that space. The 
points returned include the Pareto- and non-Pareto 
points. In principle, to obtain the full coverage, the 
ioL intervals would have to be (-00 to +00) so in 
practical applications the interval spans need to be 
set judgmentally. 

The remainder of the paper presents nunierical 
examples of using the above outlined optimization 
technique as a tool to explore multi-attribute design 
spaces. 

Numerical Examples 
Small scale, introductory example 

The concept of controlling the object attributes 
by multi-objective optimization may be illustrated 
by the following example that is utterly simple and 
yet instructive. The example is a cantilever box- 
beam of length L with a rectangular, b-by-h, thin- 
walled cross-section, loaded by a force P at the tip, 
as depicted in Fig. 6. 

A P=5000 N 
I L = 200 cm I 4 
I I 

b A 

t* 
ti - wall thickness 

A-A 

Fig. 6 Cantilever Beam Example 

The multi-objective optimization problem is de- 
fined * 

Given E - Young’s modulus 
L - Beam Length 
ga - Allowable stress 

Find x =b,h1t1, t2 , t3  

Satisfy gj 5 0 

where: W - st,ruct,ural weight (tantamount, t,o the 
matserial volume); S - bending stiffness with respect 
to t.he tip load P ;  T - the lowest. torsion niode fre- 
quency; B - t,he lowest bending mode freqiiency; g, 
- constraints on normal stress, and on buckling of 
the top panel. The bending and torsional stiffnesses 
involved in the frequency calculations are expressed, 
respectively, by the strength of materials beam for- 
niulas and by the thin-walled box beam formulas 
due to Bredt. The numerical disparity of the ternis 
in the above formulation was removed by t,he use of 
norrnalization with the initial values. 

The solution obtained numerically (using t,he hii- 
crosoft Excel solver) for various values of (ui gen- 
erat,es a family of the box-beam designs entailing a 
broad variety of the cross-sectional dimensions, as  
illustrated by a few examples in Fig. 7 for various 
w1 and 1u2. The wi settings appear beneath cross- 
sections that are drawn to scale in regard t,o the b 
and h dimensions. The wall thicknesses and the at,- 
tributes are inscribed and so are the at,t,ributes. The 
result saniple continues in Table 1 that shows how 
some of t,he attributes change when io1 = cmstant, 
703 = 0, and PUZ and I C ~  vary. These result,s were 
selected from about 40 different Excel Solver execu- 
tions. 

Table 1 Cantilevered Beam Results 

102 W/Wo s/so B/Bo T/To 
-1.0 4.4053 6.1347 0.1924 0.2934 
-0.5 
0.0 
0.5 
1.0 
2.0 
4.0 
8.0 

niax Imin 

1.3265 1.9824 
1.0000 1.0000 
1.0496 0.7685 
1.2471 0.4987 
1.5202 0.3040 
1.8531 0.1853 
2.2590 0.1129 

1.94 55.73 

0.6167 
1 .oooo 
1.1135 
1.2680 
1.471 1 
1.7067 
1.9800 
10.42 

1.0300 
1 .oooo 
0.6567 
0.6180 
0.6347 
0.6511 
0.6491 
3.55 

The last row of Table 1 shows the ratios of the 
maximum/minimurn entries in each column. These 
ratios indicate that the attributes vary in quite a 
broad range as  a function of 7 0 2 ,  for instance the ra- 
tio rnax(S/So)/ min(S/So) = 55.73, while the ratio 

4 
AMERICAN INSTITGTE OF AERONAUTICS A N D  ASTRONAUTICS 



closed circuit of the constraint boundary consisting 
of the contours c1 = 0 and c2 = 0. Each location of 
P in that travel corresponds to  a pair of values of 
f l  and $2, and the same is true for Q. These values 
are bounded by the minimum and maximum of f l  

and ,f2 marked by A, B ,  D ,  E. Hence, a plot of f l  

vs. f 2  may be constructed, corresponding to the full 
circuit travel of P and Q, as seen in Fig. 3, in which 
the Pareto-minimum segment extends from points 
1 to 2, and the Pareto-maximum segment stretches 
from 3 to 4. The corresponding Pareto segments in 
Fig. 1 are A-D and B-E. The points not in these 
segirients are non-Pareto. 

Dareto: minimum, maximum 

Fig. 3 f l  versus f i  

The above vector geometry clearly shows that the 
normalization of the vector of tu to 7uL = 1 that of- 

ten appears in the weighted sum formulation used in 
Pareto-optimization, for example Eschenauer7 and 
Koski,’ restricts the attainable orientations of GF 
to 6 5 a 5 c (see Fig. 2).  This orientation restric- 
tion is immediately seen in a two-objectives case, in 
which normalized F = If1 + (1 - to)f2. Such an 
F formulation results in aulGl whose sign in Fig. 2 
may be positive or negative to be replaced with a 
positive only 1G1 so that any GF orientation below 
102G2 is unattainable. Returning to  Figs. 1 and 2, 
it is self-evident that optimization with the above 
normalized formulation is still adequate to identify 
the min/max Pareto-frontiers A-D and B-E but is 
not capable to discover the non-Pareto points. 

Removal of the linearity assumption for f l  and f 2  

leaves the above argument qualitatively unchanged, 
even though the straight contours of f l  and f2  be- 
come curved. However, it introduces a possibility of 
the minimum of F leaving P and moving to AI that 
falls in the feasible space as illustrated in Fig. 4 that 
shows f l ,  $2, and F plotted along direction marked 
s in Fig. 1. The reasoning based on the geometry 
presented in Figs.1-4 readily extends to higher di- 
mensions in terms of the number of objectives f and 
design variables x. 

One should note another consequence of the non- 

% 

F 
f 1 

S 

Fig. 4 Non-linear f l  and f i  

linearity of f c .  The degree of non-linearity in ,ft (or 
f ~ )  may be sufficient to make the contours of f L ,  
curve inside of the cL = 0 boundary, as shown in 
Fig. 5 for an example of f t  and c2. In that situ- 
ation, by inspection, the minimum of f ,  is located 
at the vertex (South-East vertex in Fig. 5 ) .  As to 
the minimum of F ,  two possibilities exist. Either 
the combination of the 70% magnitude with the cur- 
vature of fi is insufficient to curve the contours of F 
inside of the e, = 0 boundary, in which the previous 
conclusion about location of P remain qualitatively 
valid, or it is sufficient to make the F contours curve 
inside of the cz = 0 boundary. In the latter case, the 
minimum of F must fall on the vertex just as the 
minimum of f l  does in Fig. 5.  

I 8 -marks infeasible side of 

x2 

c2 = 0 

I 

x1 

Fig. 5 
minimum to the vertex 

Curvature of f l  displacing the function 

Implicit in the above discussion is the assump- 
tion of convexity of the feasible design space. No 
general statements can be made for arbitrarily non- 
convex cases, some of which may be found examined 
in Ismail-Yahaya and Messac,2 and Koski5 and ex- 
amples provided to show t,hat the Pareto- and non- 
Pareto frontier may be disjoint when non-convexity 
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Cross-sections b, h to scale l c m  = 4 cm, 
thicknesses, and W, d, B, T inscribed. 

drawn to s c a l e 7 0  cm 

W=9.43 kg 
d = 1.97 CN 
6=327 Hz 
T=1977 Hz 

L 
0.1 

.09 

- 
0.1 

0.' 

W=10.47 
d = 0.13; 
6=379 
T=227 

0.01 
W l  wz w3 w4 

1. 0. 0. 0. w1 w* wg w, 

0.06 

1.13 

W=21.3 
d = 0.22 
B=746 
T=1285 

0.06 
reference 

1. 8. 0. 0. w, w2 w3 w, 

1. 0. 0. 0.19 

Fig. 7 Cantilever Beam Results 

m;..(W/Wo)/ min(W/Wo) = 1.94. 
Taking the above example as an indication that 

the composite objective function approach may have 
a potential to be effective as a means by which to 
control the design attributes, attention turns now to 
a larger test case of a tramport aircraft wing. 

Larger scale example 

Figure 8 displays the finite element model repre- 
senting the structural box of the wing, and Table 2 
provides a description of the FEM. The problem di- 
mensionality in terms of the numbers of the elastic 
degrees of freedom, constraints, and design vari- 
ables probably qualifies it as one of the largest cases 
treated with multi-objective optimization. 

The wing cover, rib and spar webs were made of 
a sheet construction. The model included spar caps, 
while the rib caps were not modeled. The constraints 
included equivalent Von hlises stress constraints and 
tip displacement constraints. The design variables 
were divided so that 100 of the design variables con- 
trolled 2600 quad thickness values, 25 of the design 
variables controlled 600 rod diameter values and a 
single design variable controlled the volume change 
of the wing. The wing volume was changed to pre- 
serve the wing span and the depth/chord ratio. Two 
load conditions were considered: normal lift and en- 
gine weight; and landing, half lift and engine weight. 
The lift was modeled as an equally distributed load 
over the bottom surface of the wing, engine weight 
was modeled using point loads and the landing con- 

Fig. 8 Transport Aircraft Wing 

Table 2 
its FEM 

Description of the wing test case and 

Parameter Value 
Planform Trapezoid 
Span 
Chord(Root) 
Chord(Tip) 
Depth/Chord 
Sweep Angle 
Material 
Num. Elements 
Num. Nodes 
DOF 
Design Variables 
Constraints 

70 f t  
12f f  
3 f f  
0.2 

30" aft 
Al-alloy 

3008 
1917 

11400 
126 

24048 

dition was modeled as a moment and lifting force 
distributed over the trailing edge of the wing. 

Structural optiniization of the aircraft wing was 
performed using the program GENESIS8 that in- 
tegrates optimization and finite element analysis. 
Three optimization problems were considered: The 
first problem minimized a combination of the mass 
and first bending mode frequency; and the second 
minimized a combination of the mass and the tip 
rotation of the wing. The third problem considered 
the mass, first bending mode frequency and the wing 
internal volume. All design problems had the same 
design variabley, except for the third problem which 
included the additional design variable that controls 
the volume. 

In all the niimerical experiments the optimization 
was defined as follows, and the f6 fiinctions were 
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always normalized to eliminate the effect of the mag- 
nitude disparitv. 

Find Design variables from Table 2 

Satisfy Behavior constraints from Table 2 

For the first case. where a combination of the 
wing mass and first bending motle frequency was 
considered, the objective function in the wing tests 
illlistrated in Fig. 9 

where: A1n.s.s - wing mass; Freq - first bending mode 
frequency; Alasso - mass of the initial design; and 
Freq-0 - first, bending mode frequency of t,he initial 
design. Both ' ~ 1  and 7112 were ret,ained wit,hout nor- 
malization by 'w1 to allow a t,rade-off study bet,ween 
the mass and frequency (the wing mass was driven 
up when 11'1 < 0). Figure 9(a) shows the F variance 
over a grid of '(~1 and 7 l J 2 ,  each allowed variabilit,y 
over a fairly broad interval of &5 with an increment 
of 0.5. Of course. ii:1 =  tu.^ = 0 is a degenerat,e case 
that produced no results; the other degenerate case 
is the diagonal iu1 = w2). The variance of F is rel- 
atively small compared t,o the variance of the mass 
and frequency plot,s (see Figs. 9(b) and 9(c) respec- 
tively). The normalized mass and frequency values 
are shown in Figs. 9(b) and 9(c), using the same grid 
as shown in Fig. 9(a). These figures show that, by 
manipulating 'tc1 and 102 one may create a family of 
wing designs, bounded by light and high frequency 
and heavy and low frequency designs. The bounds 
are quite wide so that the mass varies from 52% t,o 
180% while the frequency changes from 60% to 258% 
rehive  to t,he reference design. The plot,s also show 
that, there are limits beyond which the att,ribiites of 
mass and frequency cannot be pushed, regardless of 
the magnitude of 101 and 1u2. The at,tribut,es appear 
to be slope-discont,inuous functioms of (01 and '102. 

These discontinuities were generated, as it was to he 
expected, by changes in t,he active constraint set. 

Further t,esting included the att,ribiites of mass 
and tip rotat,ion, using the following object,ive func- 

where: Rot - tip rotation; and Roto - tip rotation 
of the initial design. These tests generated results 
presented in Fig. 10. In general the same trends 
are present in Fig. 10, as compared to Fig. 9. The 

10 

5 

0 

B -5 s 
0 -10 

-15 

-20 
5 

5 

Ma- Weight Fanor 
Froq Weigm Fenor 

a) Objective Function 

M a n  WeQM FmIOr Freq Wennt FacI01 

b) Mass Component 

Fnq WsgM Fanor 5 5  MaPJ WeQM Fanor 

c) Frequency Component 

Fig. 9 Mass and Frequency Case 

variance of F is small compared to that of the mass 
and tip rotation attributes. Also the variance in F 
is of a snioot,h nature, while the mass and tip rota- 
tion at,tributes show variance with a discont,inuous 
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behavior. As before, the attributes vary broadly: 
52% to 180% for the niass and 51% to 206% for the 
tip rotation, relative to the reference design. Again, 
there are limits beyond which the attributes of mass 
and frequency cannot be pushed, regardless of the 
magnitude of 101 and 102 .  

Another feature of the individual attribute sur- 
faces in Figs. 9 and 10 are their stepped structure 
corresponding to the changes in the critical con- 
straint set and certain amount of noise where, ap- 
parently, the optimizer encountered numerical diffi- 
culties at the peripheries of the intervals. 

The next set of numerical experiments pertained 
to the objective function extended to include the 
internal volume of the wing box, an attribute of in- 
terest if the wing is used as a fuel tank 

Mass Freq Vol 
F = 101- + 102 - + ?(I3 - M a s s o  Freqo Vola ( 5 )  

where: Vol - internal volume of the wing; and Vola 
- internal volume of the initial design. The set of 
constraints was augmented with the constant ratio 
of depthlchord. 

The optimizations were carried out on a grid in 
the space of ( ~ 1 ,  702, t u g )  in which each 71’, varied 
from -5 to +5 with a step size of 0.5. The result was 
a data base in 3 dimensions (a 3D cloud of points). 
To visualize the data on 2D scatter plots, a series of 
cuts were made through the data base and displayed 
in figures: Fig. 11 - a series of frequency vs. mass 
plots for 6 values of volume: Fig. 12 - a series of 
volume vs. frequency plots for 6 values of mass; and 
Fig. 13 - a series of 6 volume vs. mass plots for 6 
values of frequency (all data normalized). 

The diagrams show variations of the attributes in 
quite wide intervals, typically 5 units wide (i.e., 0.5 
to 2.5). The shape of the cloud of points may be 
visualized if one thinks of the series of 6 graphs as 
snapshots taken while the third attribute advances, 
e.g., in Fig. 11 the volume advances as indicated by 
its values inscribed on top of each frame. The cloud 
of points grows from the single point displayed in 
Fig. ll(a) to its largest size reached in Fig. I l ( f ) .  
It may be useful to think of the cloud of points as 
a two-dimensional analog of the projection of the 
contour in Fig. 3 on the f l  and f 2  axis between A 
and B,  and between D and E. 

The distribution of points is markedly non- 
uniform as typical for the composite objective ap- 
proach’,’ and its bandedness is a reflection of the 
feasible space boundaries that have been previously 
shown in Figs. 9 and 10 as consisting of curved 
surfaces and nearly level plateaus. Wherever these 
plateaus are nearly perpendicular to the at tribute 

MBpl Weigh1 Fador 
-5 “I, 

a) Objective Function 

Rotation Weight Fador M ~ S S  wegm FRCIO, 

b) Mass Component 

7 A 

?I5 f 4 2k 

Mass WegM Fador 

c )  Tip Rotation Component 

Fig. 10 Mass and Tip Rotation Case 

plane, their projection appears as a band of points as 
in Figs. 11-13. The straight vertical lines that bound 
the clouds of points in Figs. 12(b)-12(f) and 13(b) - 
13(f) reflect the boundaries of the attribute space. 
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Normalized VoIume = 0 503968 

I -  . . *  
L.. .- -: 

Normalked Volum = 0 742065 

1 

0 5 -  

0 5  1 1 5  2 2 5  
0 5  

Normlized MBSS 

a) Normalized Volume = 0.503968 

- .  .- - :. . a * - .  v: 

' 

Normalized Volume = O W 1 6 2  

.. . . 

-. . 

C) Normalized Volume = 0.!)80162 

. 
. e  

I ., .* e. ' .. 
a. . 

N o r m l u d  Mars 

e) Normalized Volitme = 1.456356 

Normali2edVoIUm = 1218258 
3 5 ,  , I 

.i - 8 .  

*?, ...I ..' . 

I . .  I 

d) Normalized Volume = 1.218259 

NormaI~W Mass 

f )  Normalized Volume = 1.694453 

Fig. 11 Mass, Frequency, Volume Case: Normalized Volume 
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.. -y *-- 
': .. .. . - '  ' ' I 

----7 
2, , , N e m h l e d M ~ = O 4 S 2 6 8 0  , 

b 

a 
J 

8 .  . e-.. 

0 6 t  

. .* 
08 

b .  

i 2 1 
1 5  2 5  3 3 5  

04 
0 5  

Normalized Frequency 

I 
04- 0 5  1 5  ; 2 5  3 3 5  

Normallzed Frequenoy 

a) Nornialized Mass = 0.482690 b) Normalized ?vIass - 0.885344 

d) Norrnalized ?vlass - 1.690650 

Normalmd Mass = 2 485856 

c) Normalized Mass = 1.287997 

16  :.. 
.. 

" 1 : 

. .  

.,.'if -.- 1 

.-. 
7 . .  ..* .- 

I 
i 1 5  2 2 5  3 3 5  

0 4 1  
0 5  

Normlized Frqwncy 

e) Normalized Mass = 2.093303 

I 
1 1 5  2 2 5  3 3 5  

041 
0 5  

Normalized Frsqucncy 

f )  Normalized Mass = 2.495956 

Fig. 12 Mass, Frequency, Volume Case: Normalized Mass 
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- Normalized Frequemy z 0 552088 

u 4  0 6  0 8  1 1 2  1 4  1 6  
Namaltzed V d u m  

a) Nornialized Frequency = 0.552066 

Nwmalized Fmwemy = I 618267 

. *  ?. 0 

1 . c  I 

.. 
* 

8 . . .  

i' . .  
w. 9 - *I ............. . . . .  -*.I ; -- . . .  .'-,L.:: . .  

0 4  0 6  0 8  1 12 1 4  18 
Normalized Volum 

c )  Normalized Frequency = 1.61837 

N - I U ~ ~  ~ r e q ~ e n ~ y  = 2 m45m 

. I  ?. d 

I -. I 

I I . . *  . .  .. * ' ' .. 

06 0 8  I 1 2  1 4  1 6  
Normal~zed Vdume 

e) Normalized Frequency = 2.684509 

Normalized Frequency = I 085176 
-I, 

- I  !. 0 - 

.* 

... + 

i' 

06 08 1 1 2  1 4  16  
Nwmalired Volume 

b) Normalized Frequency = 1.085176 

Normalized Frequency i 2 151398 

i .. 
. . .  

I 

i 

I 
0 4  0 6  08 1 1 2  1 4  16 

Namlized Valum 

d) Normalized Requency = 9.151398 

NombLedFrWlrncy=3217820 

. I  0 

I - I 

.. 
I I . . . . .  .. - ' ' .. 

i 

06 08 I 1 2  1 4  16  
Normahred Volume 

f )  Normalized Frequency = 3.217620 

Fig. 13 Mass, Frequency, Volume Case: Normalized Frequency 

10 
AXIERICAN INSTITI.TE OF AERONAUTICS A N D  ASTRONAUTICS 



c 

I 
I 

0.612 

0.419 

0.612 

0.418 



Even though the boundary of the cloud of points 
is fuzzy as a result of the non-uniform point distri- 
bution, the cloud silhouette in Figs. 11-13 appears 
to the observer as defined fairly clearly owing to the 
human sense of sight remarkable capability to dis- 
cern patterns. This adds to the utility of the method 
especially when used with an aid of a computer mon- 
itor in an interactive manner. 

Contours of the wing cover sheet thickness plotted 
in Fig. 14 for six combinatiors of the attributes and 
the tu-coefficients provide one detailed level example 
of the diversity of the designs obtained. 

The obvious alternative to the coniposite fiinction 
approach is to probe for the boundaries of the cloud 
by optimizing with target values prescribed for the 
objective. To provide a comparison of this approach 
with the composite function method, the following 
optimization was carried out 

0.022 

0 019 

Find X 

Minimize 

Satisfy 

2 
F = (fl - f?) 
Behavior constraints from Table 2 
f i -$T) = o  
f3 - f;) = 0 

--2.2 

--2.0 

where f l  is the normalized volume, f2 is the normal- 
ized mass, f3 is the normalized frequency, and f?, 
FT, f: are the corresponding target values. The 
GENESIS objective function history and constraint 
violation history plots are shown in Fig. 15. It is 
evident that although the optimizer is able to find 
a feasible solution very quickly, the convergence is 
very slow (an arbitrary limit of 100 on the number 
of iterations was set). In comparison, an equivalent 
weighted sum approach required less than 10 design 
iterations for full convergence. There is also a po- 
tential for a “no feasible solution” result returned 
by the optimizer. This possibility must be noted as 
a demerit of the alternative method because many 
optimizers return meaningless solutions when un- 
able to converge to a feasible point, so this approach 
would then have to be executed in a trial-and-error 
fashion. 

l 1 ; l ; ; ~ l )  

Conclusions 
The study reported herein led to the following ob- 

servations: 

0 Multi-objective optimization based on the sim- 
plest technique of the composite objective func- 
tion was shown by a descriptive geometry ar- 
gunient to be able to return the design points 
that are in the feasible space or, most often, on 
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Fig. 15 GENESIS History Data 

its boundary when the weight coefficients are 
varied in magnitude and in sign. 

0 The magnitudes of individual attributes associ- 
ated with these points change in a broad range 
within the domain of the composite function 
weight coefficients. 

0 In the w-domain, the individual attributes ex- 
hibit slope discontinuities related to the changes 
in the active constraint set. as well as a certain 
amount of numerical noise. 

0 There are limits on individual att,ributes and 
their ratios. 

0 The wing example results show that the at- 
tributes of mass, displacement, and vibration 
trade for each other in very wide ranges. Ex- 
ploitation of these trade-offs may be useful in 
a vehicle design, especially if one needs to time 
the aeroelastic behavior, or control interaction 
of the structure with other subsystems. 

Attempt to explore the range of attributes by 
the target method showed that method as im- 
practical because it may be unable to find a 
feasible solution for targets beyond reach. In 

12 
AMERICAN [NSTITUTE OF AERONAUTICS AND ASTRONAUTICS 



contrast, niakiiig the to-coefficients larger tliaii 
they need to be is not detrimental in the coin- 
posite function-based approach. 

0 On the other hand, if these coefficient ranges 
are too small, the fenqible design will not be ex- 
plored in full. That calls for judgment in setting 
these ranges. 

0 Although parallel computing was not in the 
scope of this study, it is self-evident that the 
method is amenable to the use of existing anal- 
ysis and optimization codes in the manner of a 
coarse-grained parallelism. In that mode, the 
time for exploration of the design space may 
be reduced to the time of a single optimiza- 
tion should a sufficient number of processors be 
available. 

0 The limitations on the attributes and their ra- 
tios are defined as fuzzy outlines of the clouds 
of points but the clarity of that definition to the 
human observer appears to be sufficient as an 
aid in making design decisions. 

Overall, the multi-objective optimization based 
on the composite objective function technique was 
found to be a simple and practical tool for exploring 
the design space for many design attributes simulta- 
neously, including the Pareto- and non-Pareto design 
points, once the design concept has been decided. It 
has a potential for providing a fairly clear insight 
into the design space to determine what is and what 
is not possible in ternis of the design attributes; this 
information may be particularly useful in guiding 
specification writing so as to avoid unattainable re- 
quirements. It returns a collection of feasible designs 
from which one can choose, so in this sense it enables 
a control over the design in a range of alternatives 
as opposed to a single point optimum design. 
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